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Abstract. A generalized multi-granulation rough set is proposed in this
paper. In the new model, supporting characteristic function is defined
and a parameter called information level is introduced to investigate
that an object supports a concept precisely under majority granulations.
Moreover, some important properties are discussed on the new multi-
granulation rough set. And it can be found that the proposed model is
more valid than old multiple granulation rough set models and Pawlak
rough set model.
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1 Introduction

The rough set theory proposed by Z. Pawlak ([2]) in 1980’s is a useful soft
computing tool for reasoning from data and a new mathematical approach to
handle imprecision, vagueness and uncertainty in data analysis. As this theory
has been applied to various fields such as medicine, engineering, management,
economy, finance and security, many generalized rough set models are developed
and studied ([1, 3, 7–12]).

Let I = (U, A, V, f) be an information system. B ⊆ A is an attribute subset.
The equivalence relation corresponding to the attribute subset B is still denoted
by itself. For an arbitrary set X ⊆ U , it may be impossible to describe X
precisely using the equivalence classes [x]B = {y ∈ U |f(x, a) = f(y, a), ∀a ∈ A},
that is, X can’t be equal to the combination of some equivalence classes. In this
case, one can depict the concept X by a pair of sets so called lower and upper
approximation sets which are precise with respect to B. And the pair of sets can
be defined as

B(X) = {x ∈ U |[x]B ⊆ X}, B(X) = {x ∈ U |[x]B ∩ X �= ∅}.
X is fine if and only if B(X) = B(X), otherwise X is rough if and only if
B(X) �= B(X). The sets B(X) and B(X) are called, respectively, the lower
approximation set and upper approximation set of X([1–3, 7, 12]).
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2 Multi-granulation Rough Set

Multi-granulation rough set model (MGRS) was studied as an expanding of
Pawlak rough set model in references [4–6, 10]. An equivalence class of an object
with respect to an attribute subset is a granularity in the view of granular
computing. And a partition of the universe is a granular space. Then the classical
rough set model is a single granulation rough set model (SGRS) and the granular
space in this model is induced by the indiscernibility relation of attribute set. In
cases referred in referrence [6](Case1, Case2 and Case3), there are limitations in
SGRS for dealing with practical problems, and MGRS now can be used to solve
these problems.

In MGRS, unlike SGRS, a concept is approximated through multiple parti-
tions of U induced by multiple equivalence relations. And we have a brief intro-
duction of MGRS in this section. As we have studied multi-granulation rough
set further, we now in this section illustrate the two forms of multi-granulation
rough set in our submitted paper [10].

Definition 2.1.([6, 10]) Let I = (U, A, V, f) be an information system, X ⊆
U and P = {Pi ⊆ A|Pi ∩ Pj = ∅(i �= j), i, j ≤ l}. The lower and upper
approximation sets of X with respect to P can be defined by following.

OM(X) = {x ∈ U | ∨ ([x]Pi ⊆ X), i ≤ l},
OM(X) = {x ∈ U | ∧ ([x]Pi ∩ X �= ∅), i ≤ l}.

where “∨” means the logical operator “OR” and “∧” means the logical operator
“AND”.

X is definable if and only if OM(X) = OM(X); otherwise X is rough if
and only if OM(X) �= OM(X). This model can be called the optimistic multi-
granulation rough set model, denoted by OMGRS. And OM(X) and OM(X)
are called, respectively, optimistic lower and upper approximation sets.

From the above definition, the operators “ ∨ ” and “ ∧ ” can be exchanged
between the lower approximation set and the upper approximation set. Corre-
sponding to OMGRS, the pessimistic multi-granulation rough set model, denoted
by PMGRS, can be defined in the following .

Definition2.2.([10]) Let I = (U, A, V, f) be an information system, X ⊆ U and
P = {Pi ⊆ A|Pi ∩ Pj = ∅(i �= j), i, j ≤ l}. The pessimistic lower and upper
approximation sets of X with respect to P can be defined as follows.

PM(X) = {x ∈ U | ∧ ([x]Pi ⊆ X), i ≤ l},
PM(X) = {x ∈ U | ∨ ([x]Pi ∩ X �= ∅), i ≤ l}.

X is definable if and only if PM(X) = PM(X), otherwise X is rough if and only
if PM(X) �= PM(X). PM(X) and PM(X) are called,respectively, pessimistic
lower and upper approximation sets.

As generalizations of Pawlak rough set model, we merely show the relations
of OMGRS, PMGRS and SGRS in the next proposition. Other descriptions on
multi-granulation rough set can be reviewed in references [4–6, 10].
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Proposition 2.1.([6, 10]) Let I = (U, A, V, f) be an information system, X ⊆ U
and P = {Pi ⊆ A|Pi ∩ Pj = ∅(i �= j), i, j ≤ l}. The following propositions hold.

(1) OM(X) =
l∪

i=1
Pi(X);

(2) OM(X) =
l∩

i=1
Pi(X);

(3) PM(X) =
l∩

i=1
Pi(X);

(4) PM(X) =
l∪

i=1
Pi(X);

(5) PM(X) ⊆ OM(X);

(6) OM(X) ⊆ PM(X).

3 A Generalized Multi-Granulation Rough Set

The two forms of multi-granulation rough set model illustrated in Section 2 are
only special ones . From these two forms, we propose a more generalized and
logical one in this section.

In order to present the generalized multi-granulation rough set model, we
define a function called supporting characteristic function firstly.

Definition 3.1. Let I = (U, A, V, f) be an information system, X ⊆ U and
P = {Pi ⊆ A|Pi ∩ Pj = ∅(i �= j), i, j ≤ l}. Characteristic function SPi

X (x),
describing the inclusion relation between the class [x]Pi and the concept X , is
defined as follows.

SPi

X (x) =

{
1, [x]Pi ⊆ X

0, else
(i ≤ l).

We call SPi

X (x) supporting characteristic function of x ∈ U . It shows the object
x supports the concept X precisely or not with respect to Pi.

Proposition 3.1. For any x ∈ U and Pi ∈ P , the following properties of SPi

X (x)
hold.

(1) SPi

∼X(x) =

{
1, [x]Pi ∩ X = ∅

0, [x]Pi ∩ X �= ∅

;

(2) SPi
∅

(x) = 0, SPi

U (x) = 1;
(3) SPi

X∪Y (x) ≥ SPi

X (x) ∨ SPi

Y (x);
(4) SPi

X∩Y (x) = SPi

X (x) ∧ SPi

Y (x);
(5) X ⊆ Y ⇒ SPi

X (x) ≤ SPi

Y (x);
(6) X ⊆ Y ⇒ SPi

∼X(x) ≥ SPi

∼Y (x).

where, “∧ ” and “∨ ” are, respectively, operations “minimum” and “maximum”
in this proposition.
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Proof. (1) Since [x]Pi ⊆∼ X ⇔ [x]Pi ∩X = ∅ and [x]Pi �⊆∼ X ⇔ [x]Pi ∩X �= ∅.
So this proposition is obvious.

(2) According to Definition 3.1, one can have that
∀x ∈ U ⇒ [x]Pi �⊆ ∅, i.e., SPi

∅
(x) = 0; ∀x ∈ U ⇒ [x]Pi ⊆ U , i.e., SPi

U (x) = 1.
This item is proved.
(3) As is known, “Z ⊆ X or Z ⊆ Y ⇒ (�)Z ⊆ X ∪ Y ” holds for any set Z.

Thus, we have

SPi

X (x) ∨ SPi

Y (x) = 1 ⇔ SPi

X (x) = 1 or SPi

Y (x) = 1 ⇔ [x]Pi ⊆ X or [x]Pi ⊆ Y

⇒ (�)[x]Pi ⊆ X ∪ Y ⇔ SPi

X∪Y (x) = 1.

If X ∪ Y = U , then SPi

X∪Y (x) = SPi

U (x) = 1 is obvious. If X ∪ Y �= U , then
∼ (X ∪ Y ) =∼ X∩ ∼ Y �= ∅. So, we have that

SPi

X∪Y (x) = 0 ⇔ [x]Pi∩ ∼ (X ∪ Y ) �= ∅ ⇔ [x]Pi∩ ∼ X∩ ∼ Y �= ∅

⇒ (�)[x]Pi∩ ∼ X �= ∅ and [x]Pi∩ ∼ Y �= ∅

⇔ SPi

X (x) = 0 and SPi

Y (x) = 0 ⇔ SPi

X (x) ∨ SPi

Y (x) = 0.

That is to say that SPi

X
⋃

Y (x) ≥ SPi

X (x) ∨ SPi

Y (x) holds for any x ∈ U .
(4) Since “Z ⊆ X and Z ⊆ Y ⇔ Z ⊆ X ∩ Y ” holds for any set Z, we can

obviously have

SPi

X∩Y (x) = 0 ⇔ [x]Pi∩ ∼ (X ∩ Y ) �= ∅ ⇔ [x]Pi ∩ (∼ X∪ ∼ Y ) �= ∅

⇔ ([x]Pi∩ ∼ X) ∪ ([x]Pi∩ ∼ Y ) �= ∅

⇔ [x]Pi∩ ∼ X �= ∅ or [x]Pi∩ ∼ Y �= ∅

⇔ SPi

X (x) = 0 or SPi

Y (x) = 0 ⇔ SPi

X (x) ∧ SPi

Y (x) = 0;

and

SPi

X∩Y (x) = 1 ⇔ [x]Pi ⊆ X ∩ Y ⇔ [x]Pi ⊆ X and [x]Pi ⊆ Y

⇔ SPi

X (x) = 1 and SPi

Y (x) = 1 ⇔ SPi

X (x) ∧ SPi

Y (x) = 1.

Then, SPi

X∩Y (x) = SPi

X (x) ∧ SPi

Y (x) holds for any x ∈ U . This item is proved.
(5) The case is obvious if [x]Pi �⊆ X by Definition 3.1 and SPi

X (x) = 0 ≤ SPi

Y (x).
If [x]Pi ⊆ X , one can have that [x]Pi ⊆ X ⊆ Y , i.e., SPi

X (x) = 1 = SPi

Y (x). Then
this item is proved.

(6) From (1), this item can be proved similarly as (5).

For any x ∈ U and X ⊆ U , the number of equivalence classes [x]Pi satisfying

[x]Pi ⊆ X can be represented as
l∑

i=1

SPi

X (x) by supporting characteristic function

and the number of equivalence classes [x]Pi satisfying [x]Pi ∩ X �= ∅ can be

represented as
l∑

i=1

(1 − SPi

∼X(x)). Moreover, we have the following proposition.

Proposition 3.2. By supporting characteristic function, the lower and upper
approximation sets in OMGRS and PMGRS can be represented, respectively, in
the following form.
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(1) OM(X) = {x ∈ U |

l∑
i=1

SPi

X (x)

l
> 0};

OM(X) = {x ∈ U |

l∑
i=1

(1 − SPi

∼X(x))

l
≥ 1}.

(2) PM(X) = {x ∈ U |

l∑
i=1

SPi

X (x)

l
≥ 1};

PM(X) = {x ∈ U |

l∑
i=1

(1 − SPi

˜X(x))

l
> 0}.

Proof. It can be proved easily from Definition 2.1, 2.2 and 3.1.

In the view of granular computing, models in the above proposition may be not
always effective in practice. OMGRS may be so loose that the approximation
sets can’t describe concepts as precisely as possible. And PMGRS may be too
strict to depict concepts on universe.

As a generalization of OMGRS and PMGRS, we will propose a new multi-
granulation rough set model with a parameter β ∈ (0.5, 1]. We introduce this
parameter to realize that the objects supporting a concept in majority gran-
ulations are included and the ones possibly describing the concept below the
corresponding level are ignored. This model is presented in the definition below.

Definition 3.2. Let I = (U, A, V, f) be an information system, X ⊆ U and
P = {Pi ⊆ A|Pi ∩ Pj = ∅(i �= j), i, j ≤ l}. SPi

X (x) is supporting characteristic
function of x. For any β ∈ (0.5, 1], the lower and upper approximation sets of X
with respect to P are defined as follows.

P (X)β = {x ∈ U |

l∑
i=1

SPi

X (x)

l
≥ β},

P (X)β = {x ∈ U |

l∑
i=1

(1 − SPi

∼X(x))

l
> 1 − β}.

X is called definable if and only if P (X)β = P (X)β , otherwise X is rough if and
only if P (X)β �= P (X)β . We denote this generalized multi-granulation rough set
model by GMGRS and call β the information level with respect to P .

GMGRS is a generalization of OMGRS and PMGRS. The approximations
in these models can reflect this. In the following proposition, we present the
relations between GMGRS and OMGRS (PMGRS).

Proposition 3.3. Let I = (U, A, V, F ) be an information system, X ⊆ U ,
β ∈ (0.5, 1] and P = {Pi ⊆ A|Pi ∩ Pj = ∅(i �= j), i, j ≤ l}. The lower and upper
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approximations in GMGRS have the following relation with those in OMGRS
and PMGRS.

(1) PM(X) ⊆ P (X)β ⊆ OM(X);
(2) OM(X) ⊆ P (X)β ⊆ PM(X).

This proposition can be proved easily by Definition3.2 and Proposition3.2. De-
tails will not be illustrated on these two properties.

Remark 1. The relation of inclusion between P (X)β and an arbitrary Pi(X) is
uncertain. And so does it between P (X)β and an arbitrary Pi(X).

Propositions of approximations in rough set theory are useful and important
in theoretical research and practice. Thus, we will investigate some important
properties as Pawlak rough set in the following.

Proposition 3.4. Let I = (U, A, V, F ) be an information system, X ⊆ U and
P = {Pi ⊆ A|Pi ∩ Pj = ∅(i �= j), i, j ≤ l}. For any β ∈ (0.5, 1], we have that

(1a) P (∼ X)β =∼ P (X)β ;
(1b) P (∼ X)β =∼ P (X)β ;
(2a) P (X)β ⊆ X ;
(2b) X ⊆ P (X)β;
(3a) P (∅)β = P (∅)β = ∅;
(3b) P (U)β = P (U)β = U ;
(4a) X ⊆ Y ⇒ P (X)β ⊆ P (Y )β ;
(4b) X ⊆ Y ⇒ P (X)β ⊆ P (Y )β ;
(5a) P (X ∩ Y )β ⊆ P (X)β ∩ P (Y )β ;
(5b) P (X ∪ Y )β ⊇ P (X)β ∪ P (Y )β ;
(6a) P (X ∪ Y )β ⊇ P (X)β ∪ P (Y )β ;
(6b) P (X ∩ Y )β ⊆ P (X)β ∩ P (Y )β .
where, “∼” is means the complementary operation of cantor sets.

Proof. (1a) Since x ∈ P (X)β ⇔
l∑

i=1
(1−S

Pi
∼X(x))

l > 1 − β. Then,

x ∈∼ P (X)β ⇔
l∑

i=1
(1−S

Pi
∼X (x))

l ≤ 1 − β ⇔
l∑

i=1
S

Pi
∼X(x)

l ≥ β ⇔ x ∈ P (∼ X)β .

This item is proved. Item (1b) can be proved similarly as (1a).

(2a) For any x ∈ P (X)β , we have that

l∑
i=1

S
Pi
X (x)

l ≥ β > 0. Then, there must
exist i ≤ l such that [x]Pi ⊆ X . Thus x ∈ X . P (X)β ⊆ X is proved.

(2b) By ∼ P (X)β = P (∼ X)β ⊆∼ X , we can have X ⊆ P (X)β directly.
(3a)(3b) From Proposition 3.1 SPi

∅
(x) = 0 and SPi

U (x) = 1 (∀x ∈ U), we have
that
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P (∅)β = {x ∈ U |

l∑
i=1

SPi
∅

(x)

l
=

l∑
i=1

0

l
= 0 ≥ β} = ∅,

P (U)β = {x ∈ U |

l∑
i=1

SPi

U (x)

l
=

l∑
i=1

1

l
= 1 ≥ β} = U.

From the duality (1a)(1b), we can easily have P (∅)β = ∅ and P (U)β = U .

(4a) For any x ∈ P (X)β, we have

l∑
i=1

S
Pi
X (x)

l ≥ β. Since X ⊆ Y , one can have
SPi

X (x) ≤ SPi

Y (x). Then,

l∑
i=1

SPi

Y (x)

l
≥

l∑
i=1

SPi

X (x)

l
≥ β.

So x ∈ P (Y )β is obtained. Thus, this item is proved and item (4b) can be proved
similarly.

(5a) From the propositions of SPi

X (x), for any x ∈ P (X ∩ Y )β , we have that

x ∈ P (X ∩ Y )β ⇔

l∑
i=1

SPi

X∩Y (x)

l
=

l∑
i=1

SPi

X (x) ∧
l∑

i=1

SPi

Y (x)

l
≥ β

⇔

l∑
i=1

SPi

X (x)

l
≥ β and

l∑
i=1

SPi

Y (x)

l
≥ β

⇔ x ∈ P (X)β and x ∈ P (Y )β

⇔ x ∈ P (X)β ∩ P (Y )β .

(5b) From the duality property, this item can be proved easily by (5a).
(6a)(6b) can be proved directly by properties (4a) and (4b).

Remark 2. Propositions (4),(5) in Proposition 3.4 are not the same as SGRS,
OMGRS and PMGRS. And the properties P (P (X)β)β = P (X)β = P (P (X)β)β

and P (P (X)β)β = P (X)β = P (P (X)β)β don’t hold in GMGRS.
For different information levels, one can consider the difference between ap-

proximations and the following properties hold.

Proposition 3.5. Let I = (U, A, V, F ) be an information system, X ⊆ U and
P = {Pi ⊆ A|Pi ∩Pj = ∅(i �= j), i, j ≤ l}. For any α ≤ β and α, β ∈ (0.5, 1], the
following propositions hold.

(1) P (X)β ⊆ P (X)α,

(2) P (X)α ⊆ P (X)β .

Proof. It can be proved easily by Definition 3.1 and Proposition 3.4.
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In this section, we proposed a generalized multi-granulation rough set model
and studied some important propositions. From these propositions, we can eas-
ily have that GMGRS is a more generalized and logical multi-granulation rough
set model than ones refereed in Section 2. By the information level β ∈ (0.5, 1],
GMGRS has the ability to discover more affirmative information than PMGRS
and leave out some useless possible knowledge in information systems. Further-
more, GMGRS popularize OMGRS and discover information more precise than
OMGRS. Propositions studied in this section have important effect in practice
and make it convenient to solve problems using the new model we propose.

4 Conclusions

We proposed a generalized multi-granulation rough set model denoted by GM-
GRS in this paper. And some important propositions were discussed in detail.
GMGRS is a generalization of OMGRS and PMGRS. More useful information
and descriptions can be employed in GMGRS to represent the knowledge pre-
cisely for supportting the concept in majority granulations. Correspondingly,
many useless information and descriptions can be thrown off since they have
so less effect on possible knowledge representation that they can be ignored in
sense of multi-granulation.

From the paper, one can find that GMGRS is more valid than PMGRS and
OMGRS in the view of multi-granulation. This model is a complement of multi-
granulation rough set theory and may make great effect in practice.
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